The metabolism of quinone-containing alkylating agents: free radical production and measurement.

نویسنده

  • P L Gutierrez
چکیده

The metabolism of quinone-containing antitumor agents involves enzymatic reduction of the quinone by one or two electrons. This reduction results in the formation of the semiquinone or the hydroquinone of the anticancer drug. The consequence of these enzymatic reductions is that the semiquinone yields its extra electron to oxygen with the formation of superoxide radical anion and the original quinone. This reduction by a reductase followed by oxidation by molecular oxygen (dioxygen) is known as redox-cycling and continues until the system becomes anaerobic. In the case of a two electron reduction, the hydroquinone could become stable, and as such, excreted by the organism in a detoxification pathway. In some cases such as aziridine quinones, the hydroquinone can be oxidized by one electron at a time resulting in the production of superoxide, the semiquinone and the parental quinone. Quinone anticancer agents upon reduction can also set up an equilibrium between the hydroquinone, the parental quinone and the semiquinone which results in a long-lived semiquinone. Depending on the compound, aziridine quinones, for example, this equilibrium is long lasting thus allowing for the detection of the semiquinone under aerobic conditions. This phenomenon is known as comproportionation-disporportionation equilibrium. The series of reviews in this Special Issue address the consequences of bioreduction of quinone alkylators used in the treatment of cancer. In this particular review we are interested in describing the phenomenon of redox-cycling, how it is measured, and the biological consequences of the presence of the semiquinone and the oxygen radicals generated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical applications of quinone-containing alkylating agents.

Quinone-containing alkylating agents are a class of chemical agents that have received considerable interest as anticancer drugs. These agents contain a quinone moiety that can be reduced and an alkylating group that can form covalent bonds with a variety of cellular components. The oxidation state of the quinone element can modulate the activity of the alkylating element, and reduction of the ...

متن کامل

Development of a Method for measuring Reactive Oxygen Radicals Levels In Vitro and Study the Effects of Vitamin C and E on Radical Production Reaction

Background: Free radicals and reactive oxygen species(ROS) are the most important factors in formation of oxidative stress reaction. Now, radical damage has been suggested to contribute to a wide variety of diseases such as Alzheimer, atherosclerosis and cancer. Transition metal ions in the presence of the various biomolecules produce these active compounds. The aim of this study is introducing...

متن کامل

Mechanisms of action of quinone-containing alkylating agents. I: NQO1-directed drug development.

Alkylating agents have been used to treat cancer since the 1940s. Quinone-containing alkylating agents represent a class of drugs called "bioreductive alkylating agents." These drugs require reduction of the quinone moiety for activation of their alkylating substituents. Despite active research in this area, mitomycin C is the only bioreductive alkylating agent approved for general use. The "en...

متن کامل

Activity of quinone alkylating agents in quinone-resistant cells.

The role of the quinone group in the antitumor activity of quinone alkylating agents, such as mitomycin C and 2,5-diaziridinyl-3,5-bis(carboethoxyamino)-1,4-benzoquinone, is still uncertain. The quinone group may contribute to antitumor activity by inducing DNA strand breaks through the formation of free radicals and/or by influencing the alkylating activity of the quinone alkylators. The cytot...

متن کامل

Activity of Quinone Alkylating Agents in Quinone-resistant Cells1

The role of the quinone group in the antitumor activity of quinone alkylating agents, such as mitomycin C and 2,5-diaziridinyl-3,5bis(carboethoxyamino)-l,4-benzoquinone, is still uncertain. The quinone group may contribute to antitumor activity by inducing DNA strand breaks through the formation of free radicals and/or by influencing the alkylating activity of the quinone alkylators. The cytoto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2000